You are invited to a Birthday Party for Mrs. Stein. We will be canoeing down the Thornapple River!



Name\_\_\_\_\_

| Hour | • |  |
|------|---|--|
|      |   |  |

Cost\_\_\_\_\_



Name \_\_\_\_\_

|              | Today's Bellringer  |
|--------------|---------------------|
| Vocabulary:  |                     |
| • Function - | 1. 3 + 2 * 6=       |
|              | 2. $4(2+1) \div 2=$ |
| Recursion -  | 3. $4 \div 4 + 2 =$ |
|              |                     |

### **In-Class Practice:**

Team Renaissance will be traveling to the Happy Mohawk Canoe Livery to take a canoe trip. The bus will cost \$600 to get us there. Each person traveling in a canoe will cost \$13. How much will it cost the team to take a class of 30 students?

\_\_\_\_\_ (It is ok if this is a guess)

| Number of people<br>riding in canoes | Total Price |
|--------------------------------------|-------------|
| 1                                    | \$613       |
| 2                                    | \$626       |
| 3                                    | \$639       |
| 4                                    | \$652       |

Is this example a function? \_\_\_\_\_ Why? \_\_\_\_\_

A Different Example:

A certain business keeps a database of information about its customers.

HighSchoolMathTeachers@2018



| Customer Name | Home Phone Number |
|---------------|-------------------|
| Heather Baker | 3105100091        |
| Mike London   | 3105200256        |
| Sue Green     | 3234132598        |
| Bruce Swift   | 3234132598        |
| Michelle Metz | 2138061124        |

- 1. Let *C* be the rule which assigns to each customer shown in the table his or her home phone number. Is *C* a function? \_\_\_\_\_\_ Explain your reasoning.
- 2. Let *P* be the rule which assigns to each phone number in the table, the customer name(s) associated with it. Is *P* a function? \_\_\_\_\_\_ Explain your reasoning.
- 3. Explain why a business would want to use a person's social security number as a way to identify a particular customer instead of their phone number.

#### Next-Now Notation

- 1. Where is the table now? NOW =\_\_\_\_\_
- 2. How do we get to the next term? NEXT = NOW + \_\_\_\_\_
- 3. Where did the table start from? START = \_\_\_\_\_



#### Subscripts

- U<sub>n</sub> = U<sub>n-1</sub> + 13 is the same as \_\_\_\_\_
- U<sub>1</sub> = 600 is the same as \_\_\_\_\_\_

*Practice – Define each sequence using NEXT-NOW notation and subscript notation.* 

- 1. -12, -5, 2, 9...
- 2. 51, 72, 93, 114...
- 3. 0.25, -0.75, -1.25...
- 4. ¼, 3/8, ½, 5/8...
- 5. 1, 1 1/3, 1 2/3, 2...



| Name                                                                |  |
|---------------------------------------------------------------------|--|
| Define the sequence using NEXT-NOW notation and subscript notation. |  |
| 3, 7, 11, 15                                                        |  |
|                                                                     |  |

| Name                                                                |  |
|---------------------------------------------------------------------|--|
| Define the sequence using NEXT-NOW notation and subscript notation. |  |
| 3, 7, 11, 15                                                        |  |
|                                                                     |  |



| $\overline{\ }$ | <u></u>                                                             |  |
|-----------------|---------------------------------------------------------------------|--|
|                 | Name                                                                |  |
|                 | Define the sequence using NEXT-NOW notation and subscript notation. |  |
|                 | 3, 7, 11, 15                                                        |  |
|                 |                                                                     |  |



# **Answer Keys**

Day 6 Bellringer:

1. 15 2. 6 3. 3

# • Day 6 Practice:

| • |                              | NEXT-NOW notation | Subscript notation                                             |
|---|------------------------------|-------------------|----------------------------------------------------------------|
|   | <b>1.</b> -12, -5, 2, 9      | Next = Now + 7    | $U_n = U_{n-1} + 7 / U_1 = -12$                                |
|   | <b>2.</b> 51, 72, 93, 114,   | Next = Now + 21   | $U_n = U_{n-1} + 21 / U_1 = 51$                                |
|   | <b>3.</b> 0.25, -0.75, -1.25 | Next = Now – 0.5  | $U_n = U_{n-1} - 0.5 / U_1 = 0.25$                             |
|   | <b>4.</b> 1/4, 3/8, 1/2, 5/8 | Next = Now + 1/8  | U <sub>n</sub> = U <sub>n-1</sub> + 1/8 / U <sub>1</sub> = 1/4 |
|   | <b>5.</b> 1, 1 1/3, 1 2/3, 2 | Next = Now + 1/3  | U <sub>n</sub> = U <sub>n-1</sub> + 1/3 / U <sub>1</sub> = 1   |

### Define the sequence:

|              | NEXT-NOW notation | Subscript notation.           |
|--------------|-------------------|-------------------------------|
| 3, 7, 11, 15 | Next = Now + 4    | $U_n = U_{n-1} + 4 / U_1 = 3$ |

